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Abstract Microbial production strains are currently
improved using a combination of random and targeted
approaches. In the case of a targeted approach, potential
bottlenecks, feed-back inhibition, and side-routes are
removed, and other processes of interest are targeted by
overexpressing or knocking-out the gene(s) of interest.
To date, the selection of these targets has been based at
its best on expert knowledge, but to a large extent also
on ‘educated guesses’ and ‘gut feeling’. Therefore, time
and thus money is wasted on targets that later prove to
be irrelevant or only result in a very minor improvement.
Moreover, in current approaches, biological processes
that are not known to be involved in the formation of a
specific product are overlooked and it is impossible to
rank the relative importance of the different targets
postulated. Metabolomics, a technology that involves
the non-targeted, holistic analysis of the changes in the
complete set of metabolites in the cell in response to
environmental or cellular changes, in combination with
multivariate data analysis (MVDA) tools like principal
component discriminant analysis and partial least
squares, allow the replacement of current empirical ap-
proaches by a scientific approach towards the selection
and ranking of targets. In this review, we describe the
technological challenges in setting up the novel meta-
bolomics technology and the principle of MVDA algo-
rithms in analyzing biomolecular data sets. In addition
to strain improvement, the combined metabolomics and
MVDA approach can also be applied to growth medium
optimization, predicting the effect of quality differences
of different batches of complex media on productivity,
the identification of bioactives in complex mixtures, the
characterization of mutant strains, the exploration of the
production potential of strains, the assignment of func-
tions to orphan genes, the identification of metabolite-

dependent regulatory interactions, and many more
microbiological issues.
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Introduction

The recently introduced functional genomics technolo-
gies are revolutionizing research in the biological sci-
ences. Although these technologies were originally set up
to be able to elucidate the role of the many genes of
unknown function that were identified in the numerous
genome sequencing projects, the true value of these
technologies lies in the paradigm shift in methodological
approaches in the life sciences that they have initiated:
from a reductionistic, one-biomolecule-at-a-time, and
hypothesis-driven approach towards a holistic and dis-
covery/question-driven approach. This ‘genomics’ ap-
proach, whether aiming at studying gene function or
not, allows one to comprehensively understand and to
unbiasedly identify and comprehensively understand
biomolecules important for specific biological processes.

Three major functional genomics technologies are
recognized that study the keystone biomolecules involved
in proper functioning of the cell: mRNAs (transcripto-
mics, DNA-array technology), proteins (proteomics),
and metabolites (metabolomics). The transcriptome,
proteome, and metabolome are all context-dependent:
they vary in response to different environmental condi-
tions and directly reflect the physiological status of a cell.
It is this context-dependency that makes them so valuable
in understanding biological functioning.

Metabolomics is the most recent addition to the
functional genomics toolbox. It involves the non-tar-
geted, holistic analysis of changes in the complete set of
metabolites in the cell (the metabolome) in response to
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environmental or cellular changes. Metabolomics is one
step further than metabolic profiling: instead of aiming
to obtain an inventory of what metabolites are present in
the cell, it aims at quantifying every single metabolite
present in the cell (Fig. 1 [85]).

Besides the fact that the holistic ‘genomics’ concept
has only recently evolved, the metabolomics approach is
only now technically feasible due to the enormous
improvements made in the last decade in two other
critical areas of research, i.e. analytical chemistry and
bioinformatics. There have been enormous improve-
ments in the ability to separate and detect, specifically
and sensitively, large numbers of small molecules.
Moreover, fast computing and the implementation of
computer algorithms in analytical chemistry and biology
makes it now possible to process and interpret large sets
of biochemical data generated through a non-biased
holistic approach.

Metabolites

Metabolites are low-molecular-weight organic com-
pounds (<1,000 Da) that are participants in general
metabolic reactions or are required for the maintenance,
growth, and normal functioning of a cell [4]. This in-
cludes essential or nutritionally required compounds
that are not synthesized de novo. Macromolecular
compounds such as proteins, DNA, structural mole-
cules, and polymeric compounds such as glycogen, but
also non-native compounds like xenobiotics are not
considered to be metabolites [4].

Metabolites are most generally recognized for their
role in cellular metabolism and as carriers of energy and
reducing equivalents. However, metabolites also fulfill
key roles in regulation [88] and as chemosensors [55].
Moreover, many microorganisms produce secondary
metabolites like for instance antibiotics and toxins.

Metabolites have also been described as stress protectors
for a number of different environmental stresses.

Number of metabolites in the metabolome

The total number of different metabolites that are
present in a cell, is yet unknown. In total, almost 20,000
microbial metabolites have been described so far [99].
However, many of these metabolites are secondary
metabolites and are only present in relatively few
microorganisms. From the recent annotated microbial
genome sequences, between 241 and 794 metabolites
were deduced to be present in microorganisms [95].
However, it is at this moment impossible to establish the
true number of metabolites in the metabolome of a
microorganism. This is especially exemplified by the fact
that the genome sequencing projects have really taught
us how little we still know about cellular functioning:
around 40% of the genes present in the microbial ge-
nomes are either homologous to genes of unknown
function in other organisms or show no homology at all
with any of the previously identified genes (i.e. orphan
genes [2]). Moreover, an aspect that is largely neglected
in genome annotation and subsequent pathway recon-
struction studies is the broad substrate-specificity that
many of these enzymes have. Schwab [76] stated that the
broad substrate-specificity of many enzymes is the major
reason why many more metabolites will be present in
a metabolome than can be deduced from the genome
sequence.

For example, consider the metabolome of Bacillus
subtilis. The in silico metabolome of this bacterium was
deduced from its genome sequence [53] and found to
contain 576 different metabolites [95]. In a preliminary
experiment, we detected between 300 and 350 different
metabolites in B. subtilis cells grown in a mineral salts
medium, using glucose as the carbon source (unpub-
lished data). From these, 80 are of known identity,
which is approximately 25% of the total. This percent-
age is considerably lower than the 57% of metabolites
from the in silico metabolome of B. subtilis for which
reference compounds can be obtained commercially.
Assuming that the ratio between metabolites of known
and unknown identity is the same for the complete
metabolome of B. subtilis, as determined in this experi-
ment, this suggests that in total 1,200–1,400 metabolites
are present in the B. subtilis metabolome. This is
approximately three times more than the 576 deduced
from the full genome sequence.

Why metabolomics?

When selecting the functional genomics tool to be used,
there are several reasons why metabolomics is the
functional genomics technology of choice. First of all,
the information that can be derived from the metabo-
lome is very different from that of the genome,

Fig. 1 Schematic representation indicating the differences between
different metabolite analysis approaches (adapted from [85] with
permission)
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transcriptome or proteome, in that each of these levels
corresponds to a very different perspective on cellular
functioning. The genome can best be understood to
represent ‘potential function’, while the transcriptome
reflects the ‘functional response’. The proteome and the
metabolome together determine the functionality of a
cell (Fig. 2).

When going from one biochemical level to the next,
information is gained or lost by regulatory events that
occur between these levels. For instance, the correlation
between the observed changes at the transcriptome and
proteome level are poor to moderate (r2 = 0.6–0.8 [21,
24, 33, 39]). Therefore, as the biochemical level of the
metabolome is closest to that of the function of a cell
(the phenotype; Fig. 2), the study of the metabolome
will be the most relevant in order to understand bio-
logical functioning. This is especially so as changes in the
levels of individual enzymes have, in general, little effect
on metabolic fluxes, but do have a significant effect on
the concentrations of individual metabolites [30, 75].

Another reason for choosing metabolomics is that
once the metabolomics technology platform has been
established, it can be applied to any (micro-) organism,
in this sense being a truly generic functional genomics
platform. This even holds for organisms whose genome
has not been sequenced, in this way avoiding large
investments in sequencing or constructing microarrays
for the microorganism of interest. With metabolomics,
an additional advantage of metabolomics is that it can
uncover non-genetically modified organisms (GMO)
solutions to biological problems. Although increasingly
accepted, the use of GMOs is still a problem in foods
(e.g. probiotics, fermented foods) or when they need to
be released into the environment (e.g. biopesticides,
nitrogen-fixing microorganisms).

Notwithstanding the advantages of the metabolomics
technology, several challenges remain. Possibly the big-
gest problem at the moment is that scientists in the life
sciences have never been trained to deal with large
amounts of data and view these in a holistic manner. On
the contrary, they have always been trained to use a
completely reductionistic approach [48]. This not only
requires the microbiologist to have a ‘holistic’ mind set,
but also requires a need to collaborate with scientists

from different fields, i.e. especially analytical chemists,
statisticians, and informaticians, in order to achieve an
optimal approach.

Furthermore, from a biological point of view, there is
a conceptual problem when interpreting metabolomics
data. As the relationship between the metabolome and
the genome is indirect, how does one decide which of the
genes resulting in the formation or degradation of a
metabolite identified by metabolomics is the one to
knock-out or overexpress?

Also from a more technical point of view, there are
still several challenges. Many metabolites, especially
signal molecules, are only present in very low concen-
trations. The sensitivity and dynamic range of analytical
instrumentation, when applied in non-target mode, is
still not as high as it should be. Another problem is the
fact that: (1) there is no commercial software available
that allows the automated (pre-) processing of gas
chromatography–mass spectrometry (GC-MS) or liquid
chromatography–mass spectrometry (LC-MS) files, (2)
there is no general commercial reference database
available for LC-MS spectra, and (3) the reference
database for GC-MS spectra is incomplete. A last
challenge relates to the fact that only a limited number
of metabolites are commercially available. As many such
metabolites are only present in very small concentrations
in highly complex mixtures, new analytical chemical
approaches need to be developed in order to identify all
of these compounds.

Generation of representative biological samples

The key issue in metabolomics is to exploit the infor-
mation hidden in different metabolome compositions.
From a biological point of view, there are several
important aspects to be addressed in order to ascertain
the collection of representative ‘snapshot’ samples that
contain sufficient information/variation.

Experimental design

A first important step when one wants to start gener-
ating biological samples is experimental design. In order
to improve the information content of the data sets to be
generated, thereby improving the accuracy with which
relevant parameters can be identified by biostatistics, it
is important to use optimal experimental design con-
siderations in advance of the experiments [19]. This
starts with a sharp definition of the biological question
to be answered. In order to make optimal use of the
biostatistical tools, i.e. the statistical ranking of every
metabolite measured in relation to the question studied,
it is important to move beyond questions like ‘what are
the differences?’ to defining exact biological questions
that result, preferably, in quantifiable phenotypes, for
instance, specific productivity.Fig. 2 Biochemical levels in the cell
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Currently, in many transcriptomics and proteomics
studies, comparisons are made between results obtained
under two different environmental conditions. From the
experimental results, in general, the biomolecules
showing the largest fold-change are pinpointed as the
most relevant genes or proteins for a specific biological
process. However, with metabolomics, one can predict
beforehand that comparing only two metabolomes does
not allow the identification of the most relevant
metabolites. For instance, when studying bioproduct
improvement, the metabolite that increases the most
with increasing productivity is not necessarily the bot-
tleneck. Also, a metabolite strongly decreasing in con-
centration might be the most relevant for improving
product formation, as it might be an inhibitor for one of
the enzymes in the biosynthesis pathway. But also, a
metabolite that shows only a marginal, but significant,
change can be the most important for increased product
formation, as it might have a very tight (positive or
negative) control over a key biosynthetic enzyme
resulting in product formation; and therefore a very
small difference in the concentration of such a metabo-
lite may have an enormous effect on product formation.
Therefore, it is not the size or the direction of a differ-
ence in concentration that identifies a metabolite as
being the most relevant for a specific phenotype, but
instead, the strength of the correlation of a change in the
concentration of a specific metabolite with the variation
in the phenotype: i.e. which of the metabolites always
correlates with an increased productivity in all the data
sets? When setting up an experiment, it is therefore
essential to establish the minimal number of metabolo-
mes to be compared that allows a statistically reliable
interpretation of the data (see below: ‘Biostatistics’).

Once having established the number of samples one
wants to compare, the next issue is to determine how to
generate these samples. From pure mathematical con-
siderations, a multifactorial design—that is, one in
which different environmental factors are present in
many combinations—is likely to be the most informative
and thus economical [106]. However, microbiologists in
general are not used to applying such a random design.
In contrast, today’s microbial production processes are
most often established by varying one factor at a time.
But which parameter should one change for the best
effect? Should one compare different strains producing
the same product, should one affect the growth condi-
tions, or should one take samples at different times
during growth? Only time will tell which parameters are
best varied in order to achieve the largest relevant
variations in phenotype.

Reproducible growth of microorganisms

The techniques used for the cultivation of the microor-
ganism may contribute to the overall variation of the
experiment. As the biological reproducibility is much
less than the analytical reproducibility (for instance in

plants, the biological reproducibility is approximately
four times lower than the analytical reproducibility [22])
and it is essential to compare many data sets in order to
be able to identify metabolites relevant for a biological
process of interest (see above: ‘Experimental design’), a
prerequisite for metabolomics studies is that microor-
ganisms can be grown in a reproducible manner. Ideally,
cells are grown in chemostat cultures, a cultivation
technique that gives the possibility to grow microor-
ganisms under constant, carefully controlled conditions
[67]. However, industrial fermentations are, in general,
fed-batch processes, using complex media. In such
complex media, the sequential use of available substrates
is likely to occur, which might increase experimental
variation, especially when cultures are compared using
different sources or batches of such a complex medium
component.

Rapid sampling and quenching

In order to obtain representative samples, a sample
should be obtained from the culture that is identical to
the metabolome of the cells as present when they are
harvested. To this end, the metabolic state of the cells as
existing in a defined physiological state should be ‘fro-
zen’ (quenched), in order to allow the analysis of the
‘snapshot’ metabolome. Therefore, the (micro-) biolog-
ical and analytical methods need to be validated, to al-
low the analysis of samples that are identical to that of
the metabolome of the cells when they are harvested, i.e.
avoiding biotic or abiotic changes that result in the
introduction, conversion, or removal of metabolites/
compounds as present in the sample.

Ideally, the time between the cells leaving the culture
and their quenching should be zero. Preferably, there-
fore, rapid sampling techniques should be applied for
harvesting the cells [89, 103]. However, especially in view
of the rather large number of cells needed for metabo-
lome analysis (see below: ‘Sensitivity’), this might not be
possible. In those cases, at least standardized sampling
protocol should be used, to ascertain that any changes
introduced are similar for all samples taken.

Quenching of metabolism is another critical step
when collecting samples. This is especially important, as
the turnover of metabolites is even faster than that of
mRNAs and proteins. For instance, ATP has a half-life
of less than 0.1 s [102]; and therefore the metabolism
of the cells should be stopped instantaneously once
harvested. In the literature, several quenching
methods have been described. These include: (1) rapid
filtration through an ultrafiltration membrane followed
by immediate freezing of the cells [59, 74], (2), dilution of
the cells in perchloric acid [8, 89], (3) dilution of the cells
in a methanol solution of �45�C [12, 73], and (4) rapid
centrifugation [84]. The cold methanol method seems to
be the preferred method for quenching of cells for me-
tabolome studies, as it is a mild method and it allows the
concentration of cells (metabolites) by centrifugation.
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However, with some microorganisms, for instance Lac-
tococcus lactis [41], the application of this method has
been report to result in lysis of the cells upon quenching.

Interstitial fluid and compartmentation

After concentrating the cells by centrifugation, the
resulting cell pellet consists not only of cellular material
(dry weight) and intracellular fluid, but also of fluid that
is present between the cells in the pellet (interstitial
fluid). This interstitial fluid contains medium compo-
nents and extracellular metabolites, but after extraction
of the (resuspended) cells, a distinction can no longer be
made between compounds present intracellularly or
extracellularly. For instance, it was established that, for
Saccharomyces cerevisiae, 50% of the wet weight of the
cell pellet was interstitial fluid [94]. Vigorously washing
the cells prior to extraction might be a solution to this
problem, but disadvantages of this approach include a
reduction of the concentrations determined for intra-
cellular metabolites that diffuse freely over the mem-
brane (such as small organic acids) and lysis of the cells
during washing. Moreover, in eukaryotic microorgan-
isms, different compartments are present in the cells. As
the regulation of transcription, translation, enzyme
activities, and other biological processes is only affected
by the metabolite concentrations in the direct environ-
ment, metabolites should preferably be determined sep-
arately in every individual compartment. However,
given the relatively large amount of cells needed for full
metabolome analyses in view of the sensitivity of the
analytical methods and the complexity of the protocols
used for separating the different compartments, this is
currently not feasible.

Extraction of metabolites from cells

Sample preparation is the step most prone to errors.
Sample preparation protocols based on fractionation are
not very suitable in metabolomics: the more fraction-
ation steps, the greater the chance that some metabolites
will be lost and the less representative the metabolome
[97]. Therefore, sample preparation is often minimized
for metabolomics studies in order to prevent the loss of
individual components. Moreover, sample work-up
should be performed under quenched conditions in or-
der to prevent the introduction of changes in the
metabolite composition due to residual enzymatic
activity present in the samples.

For microbial metabolomics samples, several meth-
ods have been described for extracting metabolites from
the cells. These include: (1) boiling the cells in an etha-
nol–buffer solution and subsequent reduction of the
volume by evaporation in a rotavapor [29], (2) dilution
of the cells in perchloric acid [8, 59], and (3) chloroform
extraction at �45�C [12, 73]. Of these methods, chloro-
form extraction seems to be preferred, as it is a mild

method, can be performed under quenched conditions,
and does not result in the evaporation of the more vol-
atile metabolites like pyruvate [54].

Analytical chemistry: data acquisition

As said, the key issue in metabolomics is to exploit the
information hidden in different metabolome composi-
tions. From an analytical point of view, it is essential
that all, or as many as possible, metabolites are being
detected with the greatest reliability. To this end, the
following issues are important when setting up an ana-
lytical metabolomics platform.

Analytical methods

Ideally, the metabolome of the cell is determined selec-
tively in every compartment by (non-invasive) in vivo
methods. However, in vivo methods such as NMR and
IR are at present not very sensitive and moreover do not
separate individual metabolites, therefore requiring the
deconvolution of the complex spectra generated.
Therefore, most of the holistic analytical metabolomics
platforms that are currently being set up rely on invasive
techniques. Although the analysis of the first microbial
metabolome was achieved by two-dimensional thin layer
chromatogtography (TLC) [92], in general more ad-
vanced hyphenated techniques like GC-MS, LC-MS,
and LC-diode array detection (DAD) are preferred.
These methods combine chromatographic procedures
for separating metabolites, based upon their physical
and chemical properties, coupled with (mass) spectral-
based identification of each metabolite.

Hyphenated GC and LC approaches have already
been applied for decades in analytical chemistry. How-
ever, until recently, the study of metabolites was limited
to a handful of compounds at a time which were ex-
pected by the researcher to be of particular importance
in a given situation—so-called target analysis. In this
respect, metabolomics has also introduced a methodo-
logical shift in analytical chemistry from target analysis
towards holistic analysis.

GC-MS has the advantage of having a high-separa-
tion efficiency and providing reproducible retention
times, combined with sensitive and selective (electron
impact) mass detection. Classically, GC-MS has been
applied for the analysis of volatile or medium-polar
compounds present in the headspace [70, 101]. However,
many metabolites contain polar functional groups that
are thermally labile at the temperatures required for
their separation or are not volatile at all. In addition, the
peak shape of compounds with polar functional groups
can be unsatisfactory because of undesirable column
interaction, such as irreversible adsorption. Therefore,
derivatization of the compounds prior to GC analysis is
necessary. In the past decade, derivatization by oxima-
tion and subsequent sylilation has proven to be very
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powerful for the derivatization of alcohol, aldehyde,
acid, and amino groups of metabolites, resulting in the
analysis of over 200 compounds in a single chromato-
graphic run by GC-MS (Fig. 3 [15, 23, 47]).

In the future, the use of comprehensive GC x GC-MS
seems to be very promising [52, 62]. It involves the use of
two directly coupled columns, with a cryogenic modu-
lation system at their confluence (cryogenic trap). This
allows peaks eluting from the first separation column to
be refocused by cryofocusing and subsequently trans-
ferred rapidly within a small band by a temperature
pulse into a second column with different separation
properties. Separation in the second column is generally
achieved within a run time of 4–7 s. Especially inter-
esting from a biological perspective is that this approach
is expected to also be suitable for the robust and sensi-
tive analysis of individual enantiomers in highly complex
biological samples [78].

Notwithstanding the superior resolution, robustness,
and dynamic properties of GC, LC approaches are
essential for the detection of highly involatile com-
pounds during derivatization or compounds unstable at
high temperature, like nucleotides and CoA esters [64],
or larger metabolites with a molecular weight above
about 500–700 Da. Furthermore, specific detectors can
be used, like fluorescence or UV, that are much more
sensitive for certain compounds than electron-spray MS
generally used for LC-MS. The LC approaches have the
additional advantage that derivatization is, in general,
not necessary and sample volumes can be only a few
microliters or even less. A potentially large problem
associated with LC-MS approaches is ion suppression
[65], which can jeopardize the determination of the
concentration of metabolites. Ion suppression can occur
when the response of a compound in the MS detector is
suppressed due to the presence of a co-eluting com-
pound that is preferentially ionized. Moreover, as many
metabolites are instable compounds at extreme physical
conditions, the liquid phase used for the separation of

the compounds should be as neutral as possible and the
column oven temperature should not be too high. To
date only a limited number of holistic LC methods have
been reported, using a large number of different ap-
proaches [5, 26, 51, 90, 100].

More recently, capillary electrophoresis (CE)
approaches were introduced for the holistic analysis of
metabolomes [81, 87]. Compared to LC-MS, CE-MS
can in some cases be more sensitive and can provide
superior separation efficiency; but it is less reproducible
with respect to retention time and derivatization, less
straightforward to couple to MS detection, and less ro-
bust with regards to the presence of salts and peptides.

The CE approaches are a first step towards a future
use of laboratory-on-a-chip or micro total analytical
systems (lTAS) systems for the analysis of metabolomes
[49, 69]. These are methods that have the potential to
enable the multiparallel analysis of samples much faster
and with higher sensitivity than the currently used
methods. However, lTAS systems are currently in their
infancy and many different concepts are still being
pursued.

Robustness and inertness

Setting up holistic separation methods is, although not
yet frequently performed, still not the most challenging
job when setting up the analytical platform. The real
challenge is to set up an analytical platform that is truly
robust and inert so that it allows the quantitative com-
parison of metabolomes in an automated fashion, the
ultimate goal of metabolomics. Therefore, the holistic
analytical protocols should be extensively validated with
respect to robustness, i.e. variation in retention times
and response factors: one has to be absolutely sure that
every metabolite is detected quantitatively with good
precision and accuracy, to be able to detect small
differences in concentrations between samples [71]. In

Fig. 3 Full-scan GC-MS
chromatogram of a microbial
sample derivatized by
oximation and subsequent
sylilation (unpublished data)
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order to control the precision and accuracy of the overall
procedure, quality standards should be added at several
stages of the sample work-up and analysis procedure to
be able to check the variation/efficiency of the different
steps. Moreover, one should be absolutely sure that
every compound detected is really present in the me-
tabolome and not introduced (either biotically or abi-
otically) due to changes introduced during analysis.

Sensitivity

As the goal of metabolomics is to analyze all metabo-
lites, sensitivity is a highly important aspect. The most
commonly used GC-MS instrument for the holistic
analysis of biological samples is a quadrupole GC-MS
operated in the electron impact (EI) ionization mode.
This ionization mode allows the detection of any
metabolite eluting from the analytical GC column with
comparable response factor in the full-scan acquisition
mode rather than selective (and sometimes more sensi-
tive) detection using chemical positive or negative ioni-
zation. With GC-EI-quadrupole-MS, typical detection
limits are 0.025–2.0 lg metabolite/mL (unpublished
data). However, recently much more sensitive instru-
ments have come commercially available, like GC time-
of-flight (TOF) MS instruments, that are in general
5–20 times more sensitive than a quadrupole detector.
An additional increase in sensitivity can be achieved
using comprehensive GC x GC-TOF-MS rather than
GC-TOF-MS: due to the smaller peak width obtained in
the second separation dimension, an additional five- to
ten-fold increase in sensitivity can be gained.

If the screening of a wide range of compounds in full-
scan aquisition mode is the aim, ion-trap (Q) LC-MS
systems are often used. With a conventional LC set-up,
an ion-trap LC-MS system reaches sensitivity compa-
rable to GC-EI-MS using a quadrupole system. Again,
more sensitive MS instruments for full-scan screening
have recently become available, such as linear ion-trap
LC-MS systems, which are approximately 10–20 times
more sensitive than conventional ion-trap MS detectors
(unpublished data).

However, the overall sensitivity of a method is not
only determined by the sensitivity of the analytical
instruments available on the market. Samples should
also be generated from a large amount of biomass. In
addition, the sensitivity can be increased by applying
concentration steps like lyophilization and by perform-
ing the derivatization reaction in as small a volume as
possible.

Quantification

Although when combining metabolomics with multi-
variate data analysis (MVDA) it is not essential to
quantify each metabolite on an absolute scale, the ob-
tained peak areas for the same metabolite in different

samples should be comparable with each other on a
relative scale. Therefore, the response for the various
metabolites should be highly linear. Moreover, to be
able to compare the relative concentrations of metabo-
lites analyzed in different samples, the relative standard
deviation (RSD) for quantification using these methods
should be small. We have obtained RSD values <10%
for both holistic GC-MS and LC-MS methods; and the
RSDs were even better (1–4%) for the more stable me-
tabolites (unpublished data). Furthermore, in order to
relate these concentrations to the amount of biomass
that they were obtained from, it is essential to add in-
ternal standards prior to extraction and analysis. In this
respect, the dynamic range of analytical methods is im-
portant [i.e. the range of concentrations for which (at a
high or very low concentration) a change in response as
a result of a change in concentration is detected], as is
the linear range of the method. This is because the
concentrations of the same metabolite in different me-
tabolome samples can vary a great deal, as can the
concentrations of different metabolites in the same
sample (with a factor of more than 1,000 [97]). The
linear range for GC-MS using EI ionization is approx-
imately 104–105 and that for LC-MS using electrospray
ionization is 103–104.

There are two possible strategies in data analysis:
target analysis of a defined number of known (and/or
unknown) metabolites or holistic analysis of all the
metabolites. With target analysis, the peak areas of a
pre-defined list of compounds are determined, and if
appropriate response factors are available (via analysis
of standards in between or a reference database),
quantification is possible. With holistic analysis, a non-
biased analysis of all metabolites is carried out without
necessarily knowing their identity. The ultimate aim is to
generate a peak/metabolite list from every chromato-
graphic run, reporting the concentrations of every
metabolite measured by calculating the concentration
from the response information of every metabolite as
stored in a reference database. For both approaches, a
range of quality standards has to be used to control the
overall procedure, i.e. extraction, derivatization, and
analysis (injection–separation–detection) to correct for
possible variation in the response of the detector or
injection volume.

Identification of metabolites

For the identification of compounds detected by LC-
MS, fractionation of the LC eluent and subsequent
nuclear magnetic resonance (NMR) analysis is often
applied next to MS/MS experiments. However, as
compounds to be identified are often only present in
small amounts in very complex mixtures, fractionation
and subsequent NMR analysis are not straightfor-
ward to apply. Therefore, a combination of LC using
MS/MS, MSn, and high-resolution MS detection to
determine the elemental composition is required to

240



identify metabolites. The use of a recently introduced
hybrid MS detector such as the linear ion-trap combined
with the Fourier transform (FT)-MS detector is a
promising system. It should be mentioned that also the
use of flow injection into a FT-MS system is reported,
but then isomers cannot be separated and therefore not
identified and quantified [60, 91].

For the identification of compounds detected by GC-
MS, fractionation of peaks is not a straightforward
option, although preparative GC is possible. Identifica-
tion can be achieved using chemical ionization to
determine the molecular weight and high-resolution MS
detection for the determination of the elemental com-
position of the molecular ion and characteristic frag-
ments. The MS/MS and MSn experiments can then be
used for further structure elucidation.

Data pre-processing

The data output from most analytical instruments re-
quires significant pre-processing before the differences
between the data sets can be analyzed using MVDA
tools. In data pre-processing, several aspects should be
taken into account and/or corrected:

1. In order to exclude from the biological question
irrelevant effects that play an important role in
chromatography (such as column changes, tempera-
ture differences, differences between columns), the
GC data and LC data should be corrected for small
shifts in retention time (Fig. 4), drifts in base-line,
detector response, and the setting of thresholds with
respect to noise.

2. When analyzing complex mixtures like metabolomes,
it is common to encounter situations where two or
more components elute with a similar retention time
[10, 36].

3. Normalization of the data sets by correction for dif-
ferences in the amount of biomass used to derive the
different samples.

4. Data files generated by GC-MS, LC-MS, and
LC-DAD are three-dimensional in nature (i.e. chro-
matographic retention time, spectral information,
intensities). The dimension with the spectral infor-
mation (whether it be MS, fluorescence, or UV
spectra) contains highly correlated information. This
results in a drastic increase in the likelihood that
‘correlations by chance’ are identified by the MVDA
tools. Therefore, a reduction of dimensions should be
achieved, for instance by integrating the different
peaks in every mass trace (see Fig. 5).

5. Another critical step before applying MVDA tools is
the scaling of the data sets. Scaling approaches are
data pre-treatment procedures that allow one to
concentrate on the differences between the data sets
(e.g. by subtracting the average from all the data), or
to ascertain that all variables become equally
important (by converting the data into relative re-
sponses). Mean scaling and auto-scaling are the most
commonly used scaling methods in MVDA.

Currently, the lack of commercially available soft-
ware for data pre-processing severely hampers the
automated (pre-) treatment of the electronic data ac-
quired. Ultimately, deconvolution software is expected
to deal with most of these data pre-processing issues.
Deconvolution involves the mathematical treatment of
analytical data to systematically extract resolved mass
spectra for a mixture of components from the raw data.
However, the development of deconvolution software,
such as AMDIS [34, 82], which allows the holistic, non-
biased analysis of all metabolites whether their identity
is known or not, is currently in its infancy.

The ultimate aim is that the combined use of raw
data files, data pre-processing tools and a reference

Fig. 4 Effect of time-shift and
baseline correction on
chromatograms: a before
correction, b after correction
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database (see above: ‘Quantification’), should result in
the generation of peak lists that comprise the name of
the metabolites, and if metabolites are unknown, un-
ique compound identifiers, quantitative data and
quality parameters indicating the reliability with which
each peak has been identified and/or quantified. These
are the ‘clean’ data files that are the input for data
analysis and biological interpretation, which should
also be stored in the data warehouse and should be
regularly updated, with information on the identifica-
tion of compounds that were previously marked as
unknown metabolites.

Biostatistics: converting data into information, using
MVDA techniques

Central to the metabolomics approach stands the
translation of differences in the metabolome composi-
tions into phenotypic differences: the generation of large
amounts of data is not the issue, but how to extract
information from such large data sets is the crucial topic
in metabolomics [98]. This can be achieved by applying
unbiased statistical data analysis tools, preferably
MVDA (‘biostatistics’) tools since biological systems are

Fig. 5 Plot of a series of
samples analyzed by GC-MS
before (upper figure) and after
(lower figure) alignment of the
retention time and application
of an appropriate threshold
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multivariate in nature, i.e. there is an inherent interde-
pendency of the biomolecules [14, 28, 43, 50, 63]. The
MVDA (pattern recognition, chemometrics, biometrics)
tools are statistical data analysis algorithms that can
generate scientific hypotheses by reducing mathemati-
cally the many parameters in data sets and visualizing
the clustering behavior of parameters.

The MVDA techniques are matrix algebra tech-
niques: i.e. a data set composed of n variables is con-
verted into a vector in n-dimensional hyperspace. For
instance, consider a biological sample, A, in which the
concentrations of three different metabolites, i.e. x1, x2,
and x3, are determined (see Fig. 6). Sample A can be
displayed as a vector in a three-dimensional space, in
which the axes are the variables, i.e. the metabolites (x1–
x3). As the concentration of metabolite x3 is high and the
concentrations of x1 and x2 are low, the vectors repre-
senting sample A point in a direction that is close to the
x3 axis (see Fig. 6). Similarly, two other samples, B and
C, which also are high in x3 and low in x1 and x2, can be
displayed as vectors in the same three-dimensional space
and end up close to the vector describing sample A.
Also, sample P, high in x1 and low in x2 and x3, can be
displayed in the same three-dimensional space, but its
vector will point in a different direction. If only three
variables are present, the end-points of these vectors can
be represented graphically and it can easily be deduced
that samples Q and R contain a high concentration of
metabolite x1 and low concentrations of metabolites x2
and x3, as illustrated both by the direction of the vector
and by the fact that the end-point of this vector is close
to that of sample P, which consists of a similar metab-
olite mixture (Fig. 6).

Most metabolomes contain over 1,000 different
metabolites (variables). Yet, for MVDA it does not
matter if a data set contains three or thousands of
variables. In general, data sets of n variables are dis-
played as vectors in an n-dimensional space. However,
for the human eye, it is impossible to interpret data
sets that are visualized in a multi-hundred or multi-
thousand dimensional space. Therefore, it is necessary to

project such an n-dimensional space into a two- (or
three-) dimensional space.

It is possible to plot the data sets in two- or three-
dimensional plots, usingonly two or three of the original
variables (metabolites) of the original data set. However,
in the case of a large number of variables, a large
number of plots are produced. For this reason, the
underlying theme of multivariate analysis is simplifica-
tion or dimension reduction, using the correlation
structure in the data, while retaining as much as possible
of the variation present in the data. The idea behind
dimension reduction is illustrated in Fig. 7 for principal
component analysis (PCA), the most commonly em-
ployed MVDA tool. PCA concentrates strongly corre-
lating variables, i.e. variables that vary in a similar way
in all data sets, into a new variable. This new variable, a
so-called principal component (PC), is a linear combi-
nation of the original variables. For instance, x1–x3 are
the original variables and 0.5·x1 + 0.6·x2 + 0.8·x3 can
be the PC that reflects/displays the correlation between
the original variables. The remaining 0.5·x1 + 0.4·x2 +
0.2·x3 is then either a residue, or can become part of a
next PC. In this way, PCA aims at establishing rela-
tionships between the m rows (biological samples) and n
columns (variables, e.g. metabolites) of a matrix
(dimensions m · n). The matrix X is broken down into
the product of two smaller matrices and a residual ma-
trix (E1), as shown in Fig. 7. The two smaller matrices
are a row vector and a column vector whose product
extracts as large a portion of the variance in the original
matrix X as possible. Together, they make up a PC (of
the original matrix). The row vector, the 1·n matrix in
Fig. 7, is known as the loadings matrix and is a common
component of all of the metabolomes analyzed. The
column vector, the m·1 matrix in Fig. 7, is known as the
scores matrix and represents the amount of the loadings
matrix which is present in each sample. In short, the
loadings represent relationships between the variables
and the scores those between the samples. Thus, co-
varying metabolites can be identified by identifying the
variables that are present with a high loading in a PC.
Collectively, the loadings and the scores for the first PC
represent the first principal component (PC1) and they
account for the difference between the variances in
X and E1. This difference is usually expressed as the
percentage of the explained variance in X. Subsequently,
more PCs that are uncorrelated to each other are derived
in a similar manner from the residual matrix (E1). As
each PC is extracted, their value is calculated so as to
minimize the value of the residual matrix. This process is
continued until a model is obtained in which the number
of PCs is considered adequate. The number of relevant
PCs established depends on the extent of the correlation
between the variables (metabolites). The block diagram
depicted in Fig. 7 illustrates this concept for the
extraction of the first two components.

If after dimension reduction, a two-dimensional plot
is drawn of two PCs (i.e. co-varying metabolites), the
similarity of samples can be visualized (see e.g. Fig. 8).

Fig. 6 A graphical representation of the concentrations of three
variables (metabolite concentrations: x1–x3) in samples A, B, C, P,
Q, and R as vectors in a three-dimensional space
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In this graph, spots (end-points of vectors) represent
complete metabolomes. Vectors representing metabolo-
mes that are highly similar will end up close together,
while dissimilar metabolomes end up further apart in
such a two-dimensional representation. As far fewer
plots are necessary to describe a data set with PCs than
with the original variables, fewer plots are needed to
judge the relations between samples.

When displaying the data in this way, it is possible to
identify whether samples are similar or dissimilar, i.e.
samples of cells reflecting a similar biological status
cluster together (Fig. 8). Moreover, it can easily be
judged whether there is significant information in the
data sets (metabolomes) that explains the difference
between two or more biological states. If such infor-
mation is present in the data sets (metabolomes), the
clusters of samples belonging to the different biological
states do not overlap (see e.g. Fig. 8).

After determining that there is information in the
data sets that explains the difference between the dif-

ferent biological states, it is also possible to identify the
variables (metabolites) that are the most important for
these differences. This information can be obtained from
a PCA biplot. In a biplot, not only are the end-points of
the vectors belonging to the different samples displayed
(projected) in a two-dimensional plot spanned by two
PCs, but also the original variables are projected in this
two-dimensional plot (Fig. 9). From this biplot, the
variables that are important for a specific cluster can be
identified by selecting those variables (vectors) that point
in the direction of the cluster of interest and that after
projection result in a long vector, indicating that, in a
multidimensional space, this variable vector really points
in the direction of the cluster. Also, vectors that point in
the opposite direction of the cluster of interest are of
importance: these are variables that correlate negatively
with the cluster of interest.

Traditionally, MVDA tools are mainly applied as
descriptive and/or predictive methods: ‘how similar
are different data sets’ or ‘what is the property of an
uncharacterized/new data set’. However, much more
interestingly, these tools can also be applied as analytical/

Fig. 7 A block diagram
illustrating how the first two
principal components are
extracted

Fig. 8 PCA analysis: visualization of samples A, B, C, P, Q, and R
in a two-dimensional space spanned by the first and second PC.
Each dot in this figure represents the end-point of a vector

Fig. 9 Biplot: graphical representation of the projection of profiles
A, B, C, P, Q, and R and the original variables x1, x2, and x3 onto a
plane spanned by two PCs. The lower case characters denote the
projections
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interpretative tools, i.e. to reveal the information
embedded in the data: which variables (metabolites) are
important for explaining the differences in groups of data
[86], which contribute significantly to a specific pheno-
type, or which co-vary in all the data sets, indicating that
they are biologically related and may therefore result in
pathway- or metabolite-derived regulatory information.
This is key information for further strain or medium
improvement programs.

Besides PCA, there are many different MVDA tools
that can be divided in two main varieties:

1. Unsupervised methods: these are methods like PCA
or hierarchical cluster analysis that visualize rela-
tions/patterns in data sets without a priori knowl-
edge.

2. Supervised methods: these include tools like principal
component discriminant analysis [37], partial least
squares (PLS [27]), or genetic programming [30] that
visualize relations/patterns in data sets with a priori
knowledge about one or several biological properties
of the data sets. For example, information about a
specific biological group that a data set belongs to
(e.g. wild-type strain vs mutant strain) or a specific
quantifiable phenotype that belongs to a specific data
set (e.g. specific productivity or yield) is taken into
consideration when reducing the dimensions of the
data sets.

For identifying the metabolites in data sets that are
the most important for a phenotype, the MVDA tool
PLS holds especially great promise [42]. PLS is a
multivariate regression method that relates the data
matrix X to a response or y-variable, like e.g. pro-
ductivity or yield. As in PCA, in order to reduce the
dimension of X, PLS constructs new variables that are
linear combinations of the original variables. However,
in PCA, the PCs constructed summarize as much of
the original information (variation) as possible, irre-
spective of y-variable information and therefore yields
components that are not necessarily predictive/
descriptive of the y-variable. In contrast, in PLS, lin-
ear combinations of variables are estimated that are
highly correlated with respect to the response variable.
Thus, the objective criterion for constructing compo-
nents in PLS is to maximize the covariance between
the response variable (y) and a linear combination of
the original variables (metabolite concentrations; X).
Roughly, PLS results in a model (a regression model)
that describes a quantifiable variable (phenotype; P) of
interest, based on the variables determined (metabo-
lites; x1, x2, x3):

P½ � ¼ a1x1 þ a2x2 þ a3x3 þ � � �

By ordering the (relative) statistical importance of the
metabolites by virtue of the weight factors (regression
factors; a1, a2, a3) estimated by PLS for these metabo-
lites, variables that contribute most to a quantifiable
phenotype of interest can be identified. In other words,

by applying PLS, targets for metabolic engineering can
be identified and ranked, based on their importance in
relation to the question under study. By applying PLS,
we have successfully identified compounds correlating
with productivity (Fig. 10; unpublished data).

For further reading, the reader is referred to [14, 27].

Bioinformatics

Metabolomics, like any other functional genomics
technology, generates enormous amounts of data. The
generation, storage, analysis, and interpretation of these
data requires a bioinformatics infrastructure in order to
be able to handle all these data. Such an infrastructure
consists of several modules (Fig. 11).

Laboratory information management system

A laboratory information management system (LIMS)
is essential to track down how a specific sample was
generated (i.e. microorganism source, medium, growth
conditions, and so on) and the protocols with which it
was collected, extracted, analyzed, and pre-processed
[40]. This is essential to be able to judge the quality of
data sets when analyzing and interpreting the data (see
‘Biostatistics’ and ‘Biological interpretation’) or when
reanalyzing data sets in the future.

Fig. 10 Correlation between the metabolite concentration in cells
and the relative specific productivity of compounds identified by
PLS to be important for product formation (unpublished data). a
Overall correlation and b concentration of the relevant compound
in the wild type (filled triangles) and an overproducing strain
obtained by classic mutagenesis (filled circles)
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Data warehousing

The data files generated by the different analytical
methods are very large. For instance, one single LC-MS
file is 40 Mb. Not all data in such a file are information-
containing data. After data pre-processing (see above),
smaller, ‘clean’ data files can be obtained that still
contain all the relevant information. The raw data and
processed data need to be stored in a data-warehousing
infrastructure in order to allow their future re-analysis
and/or re-interpretation [35]. Preferably, such an infra-
structure also allows the storage of genomic, transcri-
ptomics, and proteomics data, essential to allow the
(future) integration of these data sets into a systems
biology approach. Although there is data-warehousing
software commercially available, a structure for storing
biomolecule data sets is not provided with it, nor is there
currently consensus about how to best bring structure in
such data. Therefore, at many different places, scientists
are independently discovering both what is the best
method and which data to store.

Reference database

One of the key challenges in metabolomics will be the
identification of the metabolites detected. For instance,
of the 576 metabolites of the in silico metabolome of
B. subtilis, 43% are not commercially available
(unpublished data), because they are either inherently
instable, or not interesting enough to allow their com-
mercial production. Even more so, the percentage of
metabolites for which no reference compounds are
available is much larger when analyzing cell extracts of
this microorganism. Therefore, an enormous effort is
required to identify all these unknowns (see above:
‘Identification of metabolites’). Such effort put into the
identification of specific metabolites should not be
wasted. Retention index, mass spectral, response, and
other relevant information, such as synonyms, molecu-
lar weight, etc, of the newly identified compounds

should be stored in a reference database, to facilitate the
identification of the same metabolite in the future.

One such a reference database is commercially
available for compounds analyzed by GC-MS (NIST
database; http://webbook.nist.gov/chemistry/), but for
LC-MS data no such reference database is available.
Preferably, however, such a metabolomics reference
database should be independent of the analytical meth-
ods used, to also be able to correct for compounds
analyzed by more than one of the analytical methods
that comprise the metabolomics platform.

Biostatistics toolbox

Once ‘clean’ data sets have been generated, the data
should be transferred into information, using data
analysis tools. Many MVDA tools are available via
commercial software packages such as Matlab (The
Mathworks), but data analysis tools developed by one-
self, or not commercially available, should also be made
accessible via the bioinformatics infrastructure (Fig. 11).

Biological interpretation

After having identified specific [set(s) of] metabolites as
being important for the question under study, the issue
is to obtain the maximum information about the bio-
logical function of these metabolites, preferably as
quickly as possible, in the context of the question under
study. Although most microbiologists have at their
disposal a good knowledge of microbial physiology,
one cannot expect that everybody knows everything
about the role of every metabolite known in every
microorganism in each biological context. Therefore,
tools are needed to assist the microbiologist in the
interpretation of the potential meaning of the metab-
olites identified by biostatistics as being relevant for a
specific biological question. The next sections describe
such tools.

Fig. 11 Schematic presentation
of the data warehousing and
data interpretation
infrastructure for metabolomics
(and other functional genomics
technologies). LIMS
Laboratory information
management system
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Metabolic pathway diagrams

Visualization of the metabolites identified in metabolic
pathways can be an enormous aid in understanding the
biological relevance of the identified metabolites in
relation to the question under study. Several metabolic
pathways are available via the Internet, such as KEGG
[44], EcoCyc [46], UM-BBD [17], and WIT [66]. How-
ever, these pathways are generally more aimed at being
as complete as possible, than as an aid to the biological
interpretation of results; and they are, therefore, not
always very helpful in the biological interpretation of the
results (for instance compare Fig. 12a, b). Preferably,
metabolic diagrams should be drawn in such a way that
the biological meaning of an identified metabolite be-
comes immediately apparent, i.e. why is it logical for the
cell to increase or decrease the level of a certain
metabolite in relation to the question addressed. This
involves drawing the diagrams in a way that biologists
are familiar with, but essential information in relation to
reducing equivalents, energy, and cofactors required or
consumed in specific steps should preferably also be
visualized in such diagrams. Moreover, pathway dia-
grams that contain a lot of reactions are generally not
very clear and tend to confuse the issue. Therefore, in
contrast to what is stated by Li et al. [56], bioinformatics
tools that highlight all metabolites that increase or de-
crease in concentration will only be of limited value for
biological interpretation.

Another risk with the graphical representation of
metabolic pathways as presented in databases is that
they are incomplete. For instance, Propionibacterium
shermanii uses a modified citric acid cycle [3] which is not
present in the KEGG database. This is especially a
problem as metabolic routes are highly variable amongst
different microorganisms.

In this respect, the notion about what is a metabolic
pathway, especially in view of the fact that they all
interact and that there is redundancy, has also to be
taken into account [56]. Metabolic pathways usually
ignore side-reactions and the interactions of co-sub-
strates. Therefore, the term ‘metabolic neighborhoods’
was introduced and is defined as ‘the set consisting of a
central metabolite, all the reactions that include it as a
substrate or product, plus all metabolites that take part
in those reactions’ [56]. Metabolic neighborhood repre-
sentations allow local views of all pathways surrounding
a specific metabolite of interest, in contrast to most
pathway maps present in databases that represent only
part of the network [56].

Besides graphical representations of biochemical
pathways, metabolic models have been made for several
microorganisms [83]. Two types of models can be dis-
criminated. For metabolic control analysis, models
consisting of 30–40 reactions are made that describe the
pathways between substrate degradation and product
formation [11, 105]. More recently, constraints-based
models using the full genome sequence of for instance
Escherichia coli and S. cerevisiae have been made [16,
20]. These models consist of all biochemical reactions for
which corresponding genes have been identified in the
annotated genome and contain over 700 reactions and
400 metabolites. Potentially, these models also allow the
feeding of information obtained from metabolome
analysis. Unfortunately, however, in many instances
different simulation/analysis tools were used, making the
exchange and coupling of different biochemical net-
works impossible and/or very laborious. Therefore, re-
cently, a systems biology markup language was
developed that is independent of the software used and
that allows the sharing, evaluation, and cooperative
development of models [38].

Currently also, tools are being developed that allow
the reconstruction of the metabolic network and regu-
latory interactions, based on the metabolite data

Fig. 12 Representation of the pentose phosphate pathway in: a the
KEGG database (http://www.genome.ad.jp/kegg/) and b BioCyc
(http://biocyc.org)
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obtained in the experiment [1, 72]. The basis for this
approach is that metabolites that correlate (positively or
negatively) to each other in all metabolomes are ex-
pected to be metabolically or regulatory related to each
other, while non-correlated metabolites are expected to
be more distantly related.

Databases and scientific literature

In order to summarize/obtain an overview of all re-
ported scientific findings, many databases (generally
accessible via the Internet) have appeared and are cur-
rently still appearing. One of the largest problems with
these databases is their contamination by incorrect
information [57]. Even more so, there is a considerable
problem in the fact that findings which are identified as
hypothetical or putative the first time around seem to
become more and more proven, when referred to more
distantly. Therefore, it is important that one is able to
check the merits of findings reported in such databases,
by cross-checking with the experimental data as de-
scribed in the original publication(s). This is of especial
importance as the percentage of information built upon
theoretical grounds seems to increase much faster than
the percentage of genes/biomolecules whose function
has been verified by experimentation.

In this respect, the trend that an increasing number of
scientific publications are directly accessible via the In-
ternet as PDF files will be an enormous aid, especially in
view of the fact that, inherent to the holistic nature of
metabolomics, many targets will pop up whose virtue
has to be evaluated. The PDF file-availability of scien-
tific publications via the Internet will both reduce the
risk that hypotheses are built upon unreliable informa-
tion and save a lot of time because they are available on-
line. However, not withstanding the risks of databases,
they can be very handy in a first scan about the potential
biological role of any selected metabolite.

Text-mining tools

For biological interpretation, not only is the (rapid)
availability of the original scientific publication(s) an
issue, but also the selection of the most important
publications. One would not like to think about the pile
of literature one would find when glucose pops up as the
most relevant metabolite for a specific biological ques-
tion. Therefore, text-mining tools that allow context-
based searching in e.g. abstracts of scientific manuscripts
will be an enormous aid in selecting the most relevant
literature only [77].

Metabolite function databases

Currently, several metabolite databases, such as Com-
pound KB [45] and LIGAND [32], are available via the
Internet. These databases contain all kinds of informa-
tion about the chemical properties of such compounds,
but so far nothing has been reported in these databases

about the biological role these metabolites fulfill in cells.
Generally, a link with metabolic pathway database(s) is
present, but there is no list of other (organism-specific)
roles that have been described for the metabolites (i.e.
compatible solute, allosteric affector of a specific en-
zyme, signaling molecule, and so on).

Microbial metabolomics: state-of-the-art

Metabolomics is currently still in its infancy. So far, it
has primarily been used in the biomedical area and re-
cently the first examples for plants were reported [22,
72].

In microbiology, the term metabolomics is not only
used to describe comparative comprehensive metabolite
studies, but has also been used for dynamic metabolic
flux modeling studies [8, 25]. Few examples of microbial
metabolomics studies aimed at the non-biased compre-
hensive study of metabolites have been reported. One of
the first papers of what could be described as meta-
bolomics is a study applying three different GC-MS
methods for the analysis of fatty acids, amino acids, and
carbohydrates in combination with the MVDA tool
SIMCA, in order to monitor microbial contamination
during the fermentative production of dextran by Leu-
conostoc mesenteroides [18]. The metabolome of E. coli
has been determined using two-dimensional TLC by
Ferenci and co-workers [58, 92, 93]. They relied on the
visual inspection of differences and made no effort to
identify most of the metabolites. However, using this
approach, unexpectedly elevated valine pools were
identified under oxidative stress conditions, a metabolite
not previously implicated in this biological process [93].
It was speculated that, because of valine’s tertiary car-
bon atom, it could function in ‘mopping up’ reactive
oxygen species. This example illustrates the strength of
the metabolomics approach for the identification of
metabolites not previously implicated as being impor-
tant for a specific biological process. Also, a metabolo-
mic study of S. cerevisiae was performed, applying
NMR and enzymatic detection methods for the detec-
tion of a few specific metabolites in combination with
MVDA [68]. The differences in concentrations of some
of the intracellular metabolites were used to identify the
phenotypes of several knock-out mutants.

The groups led by Nishioka and Terabe have in re-
cent years actively published on metabolome studies of
B. subtilis [6, 7, 61, 80, 81, 87]. Recently also, a study on
the metabolome of Corynebacterium glutamicum was
reported [84]. With both microorganisms, however, due
to the relatively poor quality of the biological set-up of
the experiments used by these analytical chemists (see
above: ‘Generation of representative biological sam-
ples’), the value of these studies for biology is difficult to
judge. The group led by Oliver reported preliminary
results relating to a protocol that they are validating for
metabolome analysis of S. cerevisiae [9]. They applied
the protocol set up for the study of a yeast mutant that
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did not show any apparent change in phenotypic char-
acteristics and observed clear differences in the meta-
bolic profiles in comparison with the wild type. The use
of metabolic profiling approaches for the authentication
of strains [13, 31, 79] and the detection of microbial
cross-contamination [18, 104] has been reported before.
Also, van Dam et al. [96] reported preliminary metab-
olome analysis results with S. cerevisiae. They reported
almost identical concentrations for metabolites in cells
obtained from six independently grown steady-state
fermentations; and the RSD was only one- to two-fold
higher than the RSD obtained from replicate analysis of
the same sample.

The impact of metabolomics on industrial microbiology:
conclusions and future outlook

In remarkable contrast to the relevance of the metabo-
lome for understanding cellular functioning, the devel-
opment of technologies that allow the comprehensive
analysis of ‘snapshot’ metabolomes has only just begun.
Due to the complexity of this technology, it will likely
take a few more years before fully operational and
automated metabolomics platforms are available that
allow the quantitative analysis and identification of ev-
ery single metabolite present in a metabolome.

A complicating factor in applying metabolomics, as
in any other functional genomics technology, is the
unfamiliarity of microbiologists and cell biologists with
MVDA tools like PCA and PLS, essential for converting
data into information. This is further complicated by the
highly inaccessible way in which the relatively few pa-
pers in which MVDA tools have been applied in
industrial microbiology have been written. Due to this,
the huge potential of MVDA tools in cellular biology
has yet to become apparent.

Undoubtly, metabolomics will have a strong impact
on industrial microbiology in the coming decades. By
applying this technology, trial-and-error-based ap-
proaches for target selection can be replaced by a sci-
entific way towards not only the selection but also the
ranking of targets/leads that are the basis for further
improvement of production strains or process condi-
tions [98]. This will not only result in a reduction of
research and development time, and thus money, by
wasting less time on targets that later prove to be irrel-
evant or only result in a very minor improvement, but
also in a shortening of time-to-market, as greater
improvements will be achieved in every cycle of bio-

process optimization (Fig. 13). In addition, new (unex-
pected) insights will be gained in cellular functioning and
the regulation of cellular processes, especially when
integrating metabolomics with transcriptomics and/or
proteomics into a systems biology approach.

References

1. Arkin A, Shen P, Ross J (1997) A test case of correlation
metric construction of a reaction pathway from measure-
ments. Science 277:1275–1279

2. Bailey JE (1999) Lessons from metabolic engineering for
functional genomics and drug discovery. Nat Biotechnol
17:616–618

3. Beck S, Schink B (1995) Acetate oxidation through a modified
citric acid cycle in Propionibacterium freudenreichii. Arch
Microbiol 163:182–187

4. Beecher CWW (2003) The human metabolome. In: Harrigan
GG, Goodacre R (eds) Metabolic profiling: its role in bio-
marker discovery and gene function analysis. Kluwer, Boston,
pp 311–319

5. Bhattacharya M, Fuhrman L, Ingram A, Nickerson KW,
Conway T (1995) Single-run separation and detection of
multiple metabolic intermediates by anion-exchange high-
performance liquid chromatography and application to cell
pool extracts prepared from Escherichia coli. Anal Biochem
232:98–106

6. Britz-Mckibbin P, Terabe S (2002) High-sensitivity analyses
of metabolites in biological samples by capillary electropho-
resis using dynamic pH junction-sweeping. Jpn Chem J For-
um 2:397–404

7. Britz-McKibbin P, Nishioka T, Terabe S (2003) Sensitive and
high-throughput analysis of purine metabolites by dynamic
pH Junction multiplexed capillary electrophoresis: a new tool
for metabolomics studies. Anal Sci 19:99–104

8. Bucholz A, Hurlebaus J, Wandrey C, Takors R (2002) Met-
abolomics: quantification of intracellular metabolite dynam-
ics. Biomol Eng 19:5–15

9. Castrillo JI, Hayes A, Mohammed S, Gaskell SJ, Oliver SG
(2003) An optimized protocol for metabolome analysis in
yeast using direct infusion electrospray mass spectrometry.
Phytochemistry 62:929–937

10. Colby BN (1992) Spectral deconvolution for overlapping GC/
MS components. J Am Soc Mass Spectrom 3:558–562

11. Dauner M, Sonderegger M, Hochuli M, Szyperski T, With-
rich K, Hohmann H-P, Sauer U, Bailey JE (2002) Intracell-
ualr carbon fluxes in riboflavin-producing Bacillus subtilis
during growth on two-carbon substrate mixtures. Appl
Environ Microbiol 68:1760–1771

12. Koning W de, Dam K van (1992) A method for the deter-
mination of changes of glycolytic metabolites in yeast on a
subsecond time scale using extraction at neutral pH. Anal
Biochem 204:118–123

13. Nijs M de, Larsen JS, Gams W, Rombouts FM, Wernars K,
Thrane Ul, Notermans SHW (1997) Variations in random
amplified polymorphic DNA patterns and secondary metab-
olite profiles within Fusarium species from cereals from vari-
ous parts of the Netherlands. Food Microbiol 14:449Y–457Y

Fig. 13 The metabolomics
approach integrated in a
bioprocess-optimization cycle

249



14. Dillon WR, Goldstein M (1984) Multivariate analysis, meth-
ods and applications. Wiley, New York

15. Duez P, Kumps A, Mardens Y (1996) GC-MS profiling of
urinary organic acids evaluated as a quantitative method. Clin
Chem 42:1609–1615

16. Edwards JS, Palsson BO (2000) The Escherichia coli
MG1655 in silico metabolic genotype: its definition, charac-
teristics, and capabilities. Proc Natl Acad Sci USA 97:5528–
5533

17. Ellis LBM, Hershberger CD, Wackett LP (1999) The univer-
sity of minnesota biocatalysis/biodegradation database: spe-
cialized metabolism for functional genomics. Nucleic Acids
Res 27:373–376

18. Elmroth I, Sundin P, Valeur A, Larsson L, Odham G (1992)
Evaluation of chromatographic methods for the detection of
bacterial contamination in biotechnical processes. J Microbiol
Methods 15:215–228

19. Faller D, Klingmuller U, Timmer J (2003) Simulation meth-
ods for optimal experimental design in systems biology.
Simulation 79:717–725

20. Famili I, Forster J, Nielsen J, Palsson BO (2003) Saccharo-
myces cerevisiae phentotypes can be predicted by using con-
straint-based analysis of a genome-scale reconstructed
metabolic network. Proc Natl Acad Sci USA 100:13134–
13139

21. Fell DA (2001) Beyond genomics. Trends Genet 17:680–682
22. Fiehn O, Kopka J, Dormann P, Altmann T, Trethewey RN,

Willmitzer L (2000a) Metabolite profiling for plant functional
genomics. Nat Biotechnol 18:1157–1161

23. Fiehn O, Kopka J, Trethewey RN, Willmitzer L (2000b)
Identification of uncommon plant metabolites based on
calculation of elemental compositions using gas chromatog-
raphy and quadrupole mass spectrometry. Anal Chem
72:3573–3580

24. Flutcher B, Latter GI, Monardo P, McLaughlin CS, Garrels
JI (1999) A sampling of the yeast proteome. Mol Cell Biol
19:7357–7368

25. Förster J, Gombert AK, Nielsen J (2002) A functional ge-
nomics approach using metabolomics and In Silico pathway
analysis. Biotechnol Bioeng 79:703–712

26. Fraser PD, Pinto MES, Holloway DE, Bramley PM (2000)
Application of high-performance liquid chromatography with
photodiode array detection to the metabolic profiling of plant
isoprenoids. Plant J 24:551–558

27. Geladi P, Kowalski BR (1986) Partial least squares regression:
a tutorial. Anal Chim Acta 185:1–17

28. Glassey J, Montague G, Mohan P (2000) Issues in the
development of an industrial bioprocess advisory system.
Trends Biotechnol 18:136–141

29. Gonzalez B, Francois J, Renaud M (1997) A rapid and reli-
able method for metabolite extraction in yeast using boiling
buffered ethanol. Yeast 13:1347–1356

30. Goodacre R, Kell DB (2003) Evolutionary computation for
the interpretation of metabolomic data. In: Harrigan GG,
Goodacre R (eds) Metabolic profiling: its role in biomarker
discovery and gene function analysis. Kluwer, Boston, pp
239–256

31. Goodacre R, Rischert DJ, Evans PM, Kell DB (1996) Rapid
authentication of animal cell lines using pyrolysis masss
spectrometry and auto-associative artificial neural networks.
Cytotechnology 21:231–241

32. Goto S, Oluno Y, Hattori M, Nishioka T, Kanehisa M (2002)
LIGAND: database of chemical compounds and reactions in
biological pathways. Nucleic Acids Res 30:402–404

33. Gygi SP, Rochon Y, Pranza BR, Aebersold R (1999) Corre-
lation between protein and mRNA abundance in yeast. Mol
Cell Biol 19:1720–1730

34. Halket JM, Przyborowska A, Stein SE, Mallard WG, Down
S, Chalmers RA (1999) Deconvoultion gas chromatogrphy/
mass spectrometry of urinary organic acids—potential for
pattern recognition and automated indentification of meta-
bolic disorders. Rapid Commun Mass Spectrom 13:279–284

35. Hardy N, Fuell H (2003) Databases, data modelling and
schemas. In: Harrigan GG, Goodacre R (eds) Metabolic
profiling: its role in biomarker discovery and gene function
analysis. Kluwer, Boston, pp 277–291

36. Herron NR, Donnelly JR, Sovocool GW (1996) Software-
based mass spectral enhancement to remove interferences
from spectra of unknowns. J Am Soc Mass Spectrom 7:598–
604

37. Hoogerbrugge R, Willig SJ, Kistemaker PG (1983) Discrimi-
nant analysis by double stage principal component analysis.
Anal Chem 55:1710–1712

38. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kit-
ano H et al (2003) The systems biology markup language
(SBML): a medium for representation and exchange of bio-
chemical network models. Bioinformatics 19:524–531

39. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng
JK, Bumgarner R, Goodlett DR, Aebersold R, Hood L (2001)
Integrated genomic and proteomic analyses of a systemati-
cally perturbed metabolic network. Science 292:929–934

40. Jenkins H, Hardy N, Beckmann M, et al (2004) A
proposed framework for the description of plant meta-
bolomics experiments and their results. Nat Biotechnol
22:1601–1606

41. Jensen NBS, Jokumsen KV, Villadsen J (1999) Determination
of the phosphorylated sugars of the Embden-Meyerhoff-
Parnass pathway in Lactococcus lactis using a fast sampling
technique and solid phase extraction. Biotechnol Bioeng
63:356–362

42. Johansson D, Lindgren P, Berglund A (2003) A multivariate
approach applied to microarray data for identification of
genes with cell cycle-coupled transcription. Bioinformatics
19:467–473

43. Joliffe IT (1986) Principal component analysis. Springer,
Berlin Heidelberg New York

44. Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The
Kegg databases at GenomeNet. Nucleic Acids Res 30:42–46

45. Karp PD (1992) A knowledge base of the chemical com-
pounds of intermediary metabolism. Comput Appl Biosci
8:347–357

46. Karp PD, Riley M, Saier M, Paulsen IT, Collado-Vides J,
Paley SM, Pellegrinie-Toole A, Bonavides C, Gama-Castro S
(2002) The EcoCyc database. Nucleic Acids Res 30:56–58

47. Katona ZsF, Sass P, Molnar-Perl I (1999) Simultaneous
determination of sugars, sugar alcohols, acids and amino
acids in apricots by gas chromatography-mass spectrometry.
J Chromatogr A 847:91–102

48. Kell DB, Oliver SG (2003) Here is the evidence, now what is
the hypothesis? The complementary roles of inductive and
hypothesis-driven science in the post-genomic era. Bioessays
26:99–105

49. Khandurina J, Guttman A (2002) Bioanalysis in microfluidic
devices. J Chromatogr A 943:159–183

50. Kohonen T (1995) Self-organizing maps. Springer, Berlin
Heidelberg New York

51. Kristal BS, Vigneau-Callahan KE, Matson WR (1998)
Simultaneous analysis of the majority of low-molecular-
weight, redox-active compounds from mitochondria. Anal
Biochem 263:18–25

52. Kueh AJ, Marriott PJ, Wynne PM, Vine JH (2003) Applica-
tion of comprehensive two-dimensional gas chromatography
to drugs analysis in doping control. J Chromatogr A
1000:109–124

53. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G
et al (1997) The complete genome sequence of the Gram-po-
sitive bacterium Bacillus subtilis. Nature 390:249–266

54. Lange HC, Eman M, van Zuijlen G, Visser D, van Dam
JC, Frank J, Teixeira de Mattos MJ, Heijnen JJ (2001)
Improved rapid sampling for in vivo kinetics of intracellular
metabolites in Saccharomyces cerevisiae. Biotechnol Bioeng
75:406–415

55. Lengeler JW (2000) Metabolic networks: a signal-ori-
ented approach to cellular models. Biol Chem 381:911–920

250



56. Li XJ, Brazhnik Ol, Kamal A, Guo D, Lee C, Hoops S,
Mendes P (2003) Databases adnd visualization for meta-
bolomics. In: Harrigan GG, Goodacre R (eds) Metabolic
profiling: its role in biomarker discovery and gene function
analysis. Kluwer, Boston, pp 293–309

57. Linial M (2003) How incorrect annotations evolve—the case
of short ORFs. Trends Biotechnol 21:298–300

58. Liu X, Ng C, Ferenci T (2000) Global adaptations resulting
from high population densities in Escherichia coli cultures.
J Bacteriol 182:4158–4164

59. Lowry OH, Carter J, Ward JB, Glaser L (1971) The effect of
carbon and nitrogen sources on the level of metabolic inter-
mediates in Escherichia coli. J Biol Chem 246:6511–6521

60. Mano N, Goto J (2003) Biomedical and biological mass
spectrometry. Anal Sci 19:3–14

61. Markuszewski MJ, Britz-McKibbin P, Terabe S, Matsuda K,
Nishioka T (2003) Determination of pyridine and adenine
nucleotide metabolites in Bacillus subtilis cell extract by
sweeping borate complexation capillary electrophoresis.
J Chromatogr A 989:293–301

62. Marriott P, Shellie R, Fergeus J, Ong R, Morrison P (2000)
High resolution essential oil analysis by using comprehensive
gas chromatographic methodology. Flav Fragr J 15:225–239

63. Martens H, Naes T (1989) Multivariate calibration. Wiley,
Chichester

64. McCloskey JA (1990) Constituents of nucleic acids: overview
and strategy. Methods Enzymol 193:771–781

65. Nelson MD, Dolan JW (2002) Ion suppression in LC-MS-
MS: a case study. LC GC Eur 2002:73–79

66. Overbeek R, Larsen N, Pusch GD, D’Souza M, Slekov E,
Kyrpides N, Fonstein M, Maltsev N, Selkov E (2000) WIT:
integrated system for high-throughput genome sequence
analysis and metabolic reconstruction. Nucleic Acids Res
28:123–125

67. Piper MDW, Daran-Lapujade P, Bro C, Regenberg B,
Knudsen S, Nielsen J, Pronk JT (2002) Reproducibility of
oligonucleotide microarray transcriptome analyses. An inter-
laboratory comparison using chemostat cultures of Saccha-
romyces cerevisiae. J Biol Chem 277:37001–37008

68. Raamsdonk LM, Teusink B, Broadhurst D, Zhang N,
Hayes A, Walsh MC, Berden JA, Brindle KM, Kell DB,
Rowland JJ, Westerhoff HV, Dam K van, Oliver SG (2001)
A functional genomics strategy that uses metabolome data
to reveal the phenotype of silent mutations. Nat Biotechnol
19:45–50

69. Regnier FE, He B, Lin S, Busse J (1999) Chromatography and
electrophoresis on chips: critical elements of future integrated,
microfluidic analytical systems for life science. Trends Bio-
technol 17:101–106

70. Rhodes G, Miller M, McConnel ML, Novotny M (1981)
Metabolic abnormalities associated with diabetes mellitus, as
investigated by gas chromatography and pattern-recognition
analysis of profiles of volatile metabolites. Anal Chem 27:580–
585

71. Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer
L (2000) Simultaneous analysis of metabolites in potato tuber
by gas chromatography-mass spectrometry. Plant J 23:131–
142

72. Roessner U, Luedemann A, Brust D, Fiehn O, Linke T,
Willmitzer L, Fernie AR (2001) Metabolic profiling allows
comprehensive phenotyping of genetically or environmentally
modified plant systems. Plant Cell 13:11–29

73. Ruijter GJG, Visser J (1996) Determination of intermediary
metabolites in Aspergillus niger. J Microbiol Methods 25:295–
302

74. Saez MJ, Lagunas R (1976) Determination of intermediary
metabolites in yeast. Critical examination of the effect of
sampling conditions and recommendations for obtaining true
levels. Mol Cell Biochem 13:73–78

75. Sanford K, Soucaille P, Whited G, Chotani G (2002) Ge-
nomics to fluxomics and physiomics—pathway engineering.
Curr Opin Microbiol 5:318–322

76. Schwab W (2003) Metabolome diversity: too few genes, too
many metabolites? Phytochemistry 62:837–849

77. Shatkay H, Feldman R (2003) Mining the biomedial literature
in the genomic era: an overview. J Comput Biol 10:821–855

78. Shellie R, Marriott PJ (2002) Comprehensive two-dimensional
gas chromatography with fast enantioseparation. Anal Chem
74:5426–5430

79. Soderstrom B, Frisvad JC (1984) Separation of closely related
asymmetrc penicillia by pyrolysis gas chromatography and
mycotoxin production. Mycologia 76:408–419

80. Soga T, Ueno Y, Naraoka H, Ohashi Y, Tomita M, Nishioka
T (2002) Simultaneous determination of anionic intermediates
for Bacillus subtilis metabolic pathways by capillary electro-
phoresis electrospray ionization mass spectrometry. Anal
Chem 74:2233–2239

81. Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka
T (2003) Quantitative metabolome analysis using capillary
electrophoresis mass spectrometry. J Proteome Res 2:488–494

82. Stein SE (1999) An integrated method for spectrum extraction
and compound identification from gas chromatography/mass
spectrometry data. J Am Soc Mass Spectrom 10:770–781

83. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Meta-
bolic engineering, principles and methodologies. Academic,
San Diego

84. Streikov S, Elstermann M von, Schomburg D (2004) Com-
prehensive analysis of metabolites in Corynebacterium glu-
tamicum by gas chromatography/mass spectrometry. Biol
Chem 385:853–861

85. Sweetlove LJ, Last RL, Fernie AR (2003) Predictive meta-
bolic engineering: a goal for systems biology. Plant Physiol
132:420–425

86. Taylor J, King RD, Altmann T, Fiehn O (2002) Application
of metabolomics to plant phenotype discrimination using
statistics and machine learning. Bioinformatics 18 [Suppl
2]:S241–S248

87. Terabe S, Markuszewksi MJ, Inoue N, Otsuka K, Nishioka T
(2001) Capillary electrophoretic techniques toward the me-
tabolome analysis. Pure Appl Chem 73:1563–1572

88. Kuile BH ter, Westerhoff HV (2001) Transcriptome meets
metabolome: hierarchical and metabolic regulation of the
glycolytic pathway. FEBS Lett 500:169–171

89. Theobald U, Mailinger W, Reuss M, Rizzi M (1993) In vivo
analysis of glucose-induced fast changes in yeast adenine
nucleotide pool applying a rapid sampling technique. Anal
Biochem 214:31–37

90. Tolstikov VV, Fiehn O (2002) Analysis of highly polar com-
pounds of plant origin: combination of hydrophilic interac-
tion chromatography and electrospray ion trap mass
spectrometry. Anal Biochem 301:298–307

91. Tolstikov VV, Lommen A, Nakanishi K, Tanaka N, Fiehn O
(2003) Monolithic silica-based capillary reversed-phase liquid
chromatography/electrospray mass spectrometry for plant
metabolomics. Anal Chem 75:6737–6740

92. Tweeddale H, Notley-McRobb L, Ferenci T (1998) Effect of
slow growth on metabolism of Escherichia coli, as revealed by
global metabolite pool (Metabolome) analysis. J Bacteriol
180:5109–5116

93. Tweeddale H, Notley-McRobb L, Ferenci T (1999) Assessing
the effect of reactive oxygen species on Escherichia coli using a
metabolome approach. Redox Rep 4:237–241

94. Uribelarrea JL, Pacaud S, Goma G (1985) New method for
measuring the cell water content by thermogravimetry. Bio-
technol Lett 7:75–80

95. Vaidyanathan S, Goodacre R (2003) Metabolome and prote-
ome profiling for microbial characterization. In: Harrigan GG,
Goodacre R (eds) Metabolic profiling: its role in biomarker
discovery and gene function analysis. Kluwer, Boston, pp 9–38

96. Dam JC van, Eman MR, Frank J, Lange HC, Dedem GWK,
Heijnen SJ (2002) Analysis of glycolytic intermediates in
Saccharomyces cerevisiae using anion exchange chromatog-
raphy and electrospray ionization with tandem mass spec-
trometric detection. Anal Chim Acta 460:209–218

251



97. Greef J van der, Davidov E, Verheij E, Vogels J, Heijden R
van der, Adourian AS, Oresic M, Marple EW, Naylor S
(2003) The role of metabolomics in systems biology. In:
Harrigan GG, Goodacre R (eds) Metabolic profiling: its role
in biomarker discovery and gene function analysis. Kluwer,
Boston, pp 171–198

98. Werf MJ van der (2005) Towards replacing closed with open
target selection approaches. Trends Biotechnol 23:11–16

99. Vicente MF, Basilio A, Cabello A, Pelaez F (2002) Microbial
natural products as a source of antifungals. Clin Microbiol
Infect 9:15–32

100. Vogt AM, Ackermann C, Noe T, Jensen D, Kubler W (1998)
Simultaneous detection of high energy phosphates and
metabolites of glycolysis and the Krebs cycle by HPLC. Bio-
chem Biophys Res Commun 248:527–532

101. Wahl HG, Hoffmann A, Luft D, Liebich HM (1999) Analysis
of volatile organic compounds in human urine by headspace
gas chromatography-mass spectrometry with a multipurpose
sampler. J Chromatogr A 847:117–125

102. Walsh K, Koshland DE (1984) Determination of flux through
the branch point of two metabolic cycles. The tricarboxylic
acid cycle and the glyoxylate shunt. J Biol Chem 259:9646–
9654

103. Weuster-Botz D, Graaf AA de (1996) Reaction engineering
methods to study intracellular metabolite concentrations. Adv
Biochem Eng 54:75–108

104. Wilkinson SR, Young M, Goodacre R, Morris JG, Farrow
JAE, Collins MD (1995) Phenotypic and genotypic differences
between certain strains of Clostridium acetobutylicum. FEMS
Microbiol Lett 125:199–204

105. Wittmann C, Heinzle E (2002) Genealogy profiling through
strain improvement by suing metabolic network analysis:
metabolic flux genealogy of several generations of lysine-
producing corynebacteria. Appl Environ Microbiol 68:5843–
5859

106. Yang YH, Speed T (2002) Design issues for cDNAmicroarray
experiments. Nat Genet 3:579–588

252


	Sec1
	Sec2
	Sec3
	Sec4
	Fig1
	Sec5
	Sec6
	Fig2
	Sec7
	Sec8
	Sec9
	Sec10
	Sec11
	Sec12
	Sec13
	Fig3
	Sec14
	Sec15
	Sec16
	Sec17
	Fig4
	Sec18
	Fig5
	Fig6
	Fig7
	Fig8
	Fig9
	Sec19
	Sec20
	Fig10
	Sec21
	Sec22
	Sec23
	Sec24
	Fig11
	Sec25
	Fig12
	Sec26
	Sec27
	Sec28
	Sec29
	Sec30
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	Fig13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34
	CR35
	CR36
	CR37
	CR38
	CR39
	CR40
	CR41
	CR42
	CR43
	CR44
	CR45
	CR46
	CR47
	CR48
	CR49
	CR50
	CR51
	CR52
	CR53
	CR54
	CR55
	CR56
	CR57
	CR58
	CR59
	CR60
	CR61
	CR62
	CR63
	CR64
	CR65
	CR66
	CR67
	CR68
	CR69
	CR70
	CR71
	CR72
	CR73
	CR74
	CR75
	CR76
	CR77
	CR78
	CR79
	CR80
	CR81
	CR82
	CR83
	CR84
	CR85
	CR86
	CR87
	CR88
	CR89
	CR90
	CR91
	CR92
	CR93
	CR94
	CR95
	CR96
	CR97
	CR98
	CR99
	CR100
	CR101
	CR102
	CR103
	CR104
	CR105
	CR106

